Showing posts with label research. Show all posts
Showing posts with label research. Show all posts

Dec 17, 2010

Clinical trial for Rett syndrome launched

Study marks the emergence of disease-modifying treatments for autism spectrum disorders
December 16, 2010
Boston, Mass. -- Researchers at Children's Hospital Boston have begun a randomized, placebo-controlled trial to test a potential drug treatment for Rett syndrome, the leading known genetic cause of autism in girls. The drug, mecasermin, a synthetic form of insulin-like growth factor-1 (IGF-1), is already FDA-approved for children with short stature due to IGF-1 deficiency.

Read more

May 25, 2009

Rett Syndrome Astrocytes Are Abnormal and Spread MeCP2 Deficiency through Gap Junctions

MECP2, an X-linked gene encoding the epigenetic factor methyl-CpG-binding protein-2, is mutated in Rett syndrome (RTT) and aberrantly expressed in autism. Most children affected by RTT are heterozygous Mecp2–/+ females whose brain function is impaired postnatally due to MeCP2 deficiency. While prior functional investigations of MeCP2 have focused exclusively on neurons and have concluded the absence of MeCP2 in astrocytes, here we report that astrocytes express MeCP2, and MeCP2 deficiency in astrocytes causes significant abnormalities in BDNF regulation, cytokine production, and neuronal dendritic induction, effects that may contribute to abnormal neurodevelopment. In addition, we show that the MeCP2 deficiency state can progressively spread at least in part via gap junction communications between mosaic Mecp2–/+ astrocytes in a novel non-cell-autonomous mechanism. This mechanism may lead to the pronounced loss of MeCP2 observed selectively in astrocytes in mouse Mecp2–/+ brain, which is coincident with phenotypic regression characteristic of RTT. Our results suggest that astrocytes are viable therapeutic targets for RTT and perhaps regressive forms of autism.

Source: The Journal Of Neuroscience

Dec 14, 2008

Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism

Mutations in MECP2, encoding methyl-CpG-binding protein 2 (MeCP2), cause the neurodevelopmental disorder Rett syndrome (RTT).While MECP2 mutations are rare in idiopathic autism, reduced MeCP2 levels are common in autism cortex. MeCP2 is critical for postnatal neuronal maturation and a modulator of activity-dependent genes such as Bdnf and JUNB.The activity-dependent early growth response gene 2 (EGR2), required for both early hindbrain development and mature neuronal function, has predicted binding sites in the promoters of several neurologically relevant genes including MECP2. Conversely, MeCP2 family members MBD1, MBD2 and MBD4 bind a methylated CpG island in an enhancer region located in EGR2 intron 1. This study was designed to test the hypothesis that MECP2 and EGR2 regulate each other's expression during neuronal maturation in postnatal brain development. Chromatin immunoprecipitation analysis showed EGR2 binding to the MECP2 promoter and MeCP2 binding to the enhancer region in EGR2 intron 1. Reduction of EGR2 and MeCP2 levels in cultured human neuroblastoma cells by RNA interference reciprocally reduced expression of both EGR2 and MECP2 and their protein products. Consistent with a role for MeCP2 in enhancing EGR2, Mecp2-deficient mouse cortex samples showed significantly reduced EGR2 by quantitative immunofluorescence. Furthermore, MeCP2 and EGR2 show coordinately increased levels during postnatal development of both mouse and human cortex. In contrast to age-matched controls, RTT and autism postmortem cortex samples showed significant reduction of EGR2. Together, these data support a role for dysregulation of an activity-dependent EGR2/MeCP2 pathway in RTT and autism.

Source: http://hmg.oxfordjournals.org/cgi/content/short/ddn380v1

Rett Syndrome Blogs

Medical news